9 research outputs found

    Plasmodium Purine Metabolism and Its Inhibition by Nucleoside and Nucleotide Analogues

    Get PDF
    International audienceMalaria still affects around 200 million people and is responsible for more than 400,000 deaths per year, mostly children in subequatorial areas. This disease is caused by parasites of the Plasmodium genus. Only a few WHO-recommended treatments are available to prevent or cure plasmodial infections, but genetic mutations in the causal parasites have led to onset of resistance against all commercial antimalarial drugs. New drugs and targets are being investigated to cope with this emerging problem, including enzymes belonging to the main metabolic pathways, while nucleoside and nucleotide analogues are also a promising class of potential drugs. This review highlights the main metabolic pathways targeted for the development of potential antiplasmodial therapies based on nucleos(t)ide analogues, as well as the different series of purine-containing nucleoside and nucleotide derivatives designed to inhibit Plasmodium falciparum purine metabolism.

    CDP-Ethanolamine and CDP-Choline: One-pot synthesis and \u3csup\u3e31\u3c/sup\u3eP NMR study

    No full text
    © 2014 Elsevier Ltd. All rights reserved. Herein we report a one-pot multi-step synthesis of the cofactors CDP-Ethanolamine and CDP-Choline starting from cytidine 5′-monophosphate and using commercially available and/or easily prepared reagents. While studying the 31P NMR spectrum of CDP-Ethanolamine, an unexpected characteristic for a pyrophosphate diester was observed as it showed a singlet or two doublets depending upon the pH. Therefore, further NMR studies were undertaken to investigate the pH dependence of the peak splitting pattern and measure the acid dissociation constants of the compounds

    CDP-Ethanolamine and CDP-Choline: one-pot synthesis and 31P NMR study.

    No full text
    International audienceHerein we report a one-pot multi-step synthesis of the cofactors CDP-Ethanolamine and CDP-Choline starting from cytidine 5′-monophosphate and using commercially available and/or easily prepared reagents. While studying the 31P NMR spectrum of CDP-Ethanolamine, an unexpected characteristic for a pyrophosphate diester was observed as it showed a singlet or two doublets depending upon the pH. Therefore, further NMR studies were undertaken to investigate the pH dependence of the peak splitting pattern and measure the acid dissociation constants of the compounds

    Synthesis and Evaluation of a Molecularly Imprinted Polymer for Selective Solid-Phase Extraction of Irinotecan from Human Serum Samples

    No full text
    A molecularly imprinted polymer (MIP) was synthesized by non-covalent imprinting polymerization using irinotecan as template. Methacrylic acid and 4-vinylpyridine were selected as functional monomers. An optimized procedure coupled to LC-PDA analysis was developed for the selective solid-phase extraction of irinotecan from various organic media. A specific capacity of 0.65 µmol•g−1 for the MIP was determined. The high specificity of this MIP was demonstrated by studying the retention behaviour of two related compounds, camptothecin and SN-38. This support was applied for the extraction of irinotecan from human serum samples

    The cytosolic 5’-nucleotidase cN-II lowers the adaptability to glucose deprivation in human breast cancer cells

    Get PDF
    International audienceThe cytosolic 5'-nucleotidase cN-II is a highly conserved enzyme implicated in nucleotide metabolism. Based on recent observations suggesting additional roles not directly associated to its enzymatic activity, we studied human cancer cell models with basal or decreased cN-II expression. We developed cancer cells with stable inhibition of cN-II expression by transfection of shRNA-coding plasmids, and studied their biology. We show that human breast cancer cells MDA-MB-231 with decreased cN-II expression better adapt to the disappearance of glucose in growth medium under normoxic conditions than cells with a baseline expression level. This is associated with enhanced in vivo growth and a lower content of ROS in cells cultivated in absence of glucose due to more efficient mechanisms of elimination of ROS. Conversely, cells with low cN-II expression are more sensitive to glucose deprivation in hypoxic conditions. Overall, our results show that cN-II regulates the cellular response to glucose deprivation through a mechanism related to ROS metabolism and defence

    Varia

    No full text
    corecore